频道栏目
首页 > 程序开发 > 综合编程 > 其他综合 > 正文
R语言完整建模教程解析
2018-09-28 14:34:16      个评论      
收藏   我要投稿

概述

本文使用Kaggle上的一个公开数据集,从数据导入,清理整理一直介绍到最后数据多个算法建模,交叉验证以及多个预测模型的比较全过程,注重在实际数据建模过程中的实际问题和挑战,主要包括以下五个方面的挑战:

缺失值的挑战 异常值的挑战 不均衡分布的挑战 (多重)共线性的挑战 预测因子的量纲差异

以上的几个主要挑战,对于熟悉机器学习的人来说,应该都是比较清楚的,这个案例中会涉及到五个挑战中的缺失值,量纲和共线性问题的挑战。

案例数据说明

本案例中的数据可以在下面的网址中下载:
https://www.kaggle.com/primaryobjects/voicegender/downloads/voicegender.zip
下载到本地后解压缩会生成voice.csv文件
下面首先大概了解一下我们要用来建模的数据
数据概览
数据共包含21个变量,最后一个变量label是需要我们进行预测的变量,即性别是男或者女
前面20个变量都是我们的预测因子,每一个都是用来描述声音的量化属性。
下面我们开始我们的具体过程

步骤1:基本准备工作

步骤1主要包含以下三项工作:

设定工作目录 载入需要使用的包 准备好并行计算
注册送白菜38注册送白菜38注册送白菜38 the first step: set your working directory
setwd("C:/Users/chn-fzj/Desktop/R Projects/Kaggle-Gender by Voice")
注册送白菜38注册送白菜38注册送白菜38 R中的文件路径应把Windows系统默认的"\"替换为"/"
注册送白菜38注册送白菜38注册送白菜38 load packages to be used, if not installed, please use 注册送白菜38注册送白菜38install.packages("yourPackage")
require(readr)
require(ggplot2)
require(dplyr)
require(tidyr)
require(caret)
require(corrplot)
require(Hmisc)
require(parallel)
require(doParallel)
require(ggthemes)
注册送白菜38 parallel processing set up


步骤2:数据的导入和理解

数据下载解压缩后就是一份名为‘voice.csv’ 的文件,我们将csv文件存到我们设定的工作目录之中,就可以导入数据了。

注册送白菜38注册送白菜38注册送白菜38 read in original dataset
voice_Original <- read_csv("voice.csv",col_names=TRUE)
describe(voice_Original)
  • 123

Hmisc包中的describe 函数是我个人最喜欢的对数据集进行概述,整体上了解数据集的最好的一个函数,运行结果如下:

voice_Original 
 21  Variables      3168  Observations
-------------------------------------------------------------------
meanfreq 
      n missing  unique    Info    Mean     .05     .10     .25 
   3168       0    3166       1  0.1809  0.1260  0.1411  0.1637 
    .50     .75     .90     .95 
 0.1848  0.1991  0.2177  0.2291 
lowest : 0.03936 0.04825 0.05965 0.05978 0.06218
highest: 0.24353 0.24436 0.24704 0.24964 0.25112 
-------------------------------------------------------------------
sd 
      n missing  unique    Info    Mean     .05     .10     .25 
   3168       0    3166       1 0.05713 0.03162 0.03396 0.04195 
    .50     .75     .90     .95 
0.05916 0.06702 0.07966 0.08549 
lowest : 0.01836 0.02178 0.02400 0.02427 0.02456
highest: 0.11126 0.11126 0.11265 0.11451 0.11527 
-------------------------------------------------------------------
median 
      n missing  unique    Info    Mean     .05     .10     .25 
   3168       0    3077       1  0.1856  0.1164  0.1340  0.1696 
    .50     .75     .90     .95 
 0.1900  0.2106  0.2274  0.2358 
lowest : 0.01097 0.01359 0.01579 0.02699 0.02936
highest: 0.25663 0.25698 0.25742 0.26054 0.26122 
-------------------------------------------------------------------
Q25 
      n missing  unique    Info    Mean     .05     .10     .25 
   3168       0    3103       1  0.1405 0.04358 0.07509 0.11109 
    .50     .75     .90     .95 
0.14029 0.17594 0.20063 0.21524 
lowest : 0.0002288 0.0002355 0.0002395 0.0002502 0.0002669
highest: 0.2394595 0.2405416 0.2407352 0.2421235 0.2473469 
-------------------------------------------------------------------
Q75 
      n missing  unique    Info    Mean     .05     .10     .25 
   3168       0    3034       1  0.2248  0.1874  0.1963  0.2087 
    .50     .75     .90     .95 
 0.2257  0.2437  0.2536  0.2577 
lowest : 0.04295 0.05827 0.07596 0.09019 0.09267
highest: 0.26879 0.26892 0.26894 0.26985 0.27347 
-------------------------------------------------------------------
IQR 
      n missing  unique    Info    Mean     .05     .10     .25 
   3168       0    3073       1 0.08431 0.02549 0.02931 0.04256 
    .50     .75     .90     .95 
0.09428 0.11418 0.13284 0.15632 
lowest : 0.01456 0.01492 0.01511 0.01549 0.01659
highest: 0.24530 0.24597 0.24819 0.24877 0.25223 
-------------------------------------------------------------------
skew 
      n missing  unique    Info    Mean     .05     .10     .25 
   3168       0    3166       1    3.14   1.123   1.299   1.650 
    .50     .75     .90     .95 
  2.197   2.932   3.916   6.918 
lowest :  0.1417  0.2850  0.3260  0.5296  0.5487
highest: 32.3507 33.1673 33.5663 34.5375 34.7255 
-------------------------------------------------------------------
kurt 
      n missing  unique    Info    Mean     .05     .10     .25 
   3168       0    3166       1   36.57   3.755   4.293   5.670 
    .50     .75     .90     .95 
  8.318  13.649  27.294  75.169 
lowest :    2.068    2.210    2.269    2.293    2.463
highest: 1128.535 1193.434 1202.685 1271.354 1309.613 
-------------------------------------------------------------------
sp.ent 
      n missing  unique    Info    Mean     .05     .10     .25 
   3168       0    3166       1  0.8951  0.8168  0.8322  0.8618 
    .50     .75     .90     .95 
 0.9018  0.9287  0.9513  0.9630 
lowest : 0.7387 0.7476 0.7477 0.7485 0.7487
highest: 0.9764 0.9765 0.9765 0.9785 0.9820 
-------------------------------------------------------------------
sfm 
      n missing  unique    Info    Mean     .05     .10     .25 
   3168       0    3166       1  0.4082  0.1584  0.1883  0.2580 
    .50     .75     .90     .95 
 0.3963  0.5337  0.6713  0.7328 
lowest : 0.03688 0.08024 0.08096 0.08220 0.08266
highest: 0.82259 0.82267 0.82610 0.83135 0.84294 
-------------------------------------------------------------------
mode 
      n missing  unique    Info    Mean     .05     .10     .25 
   3168       0    2825       1  0.1653 0.00000 0.01629 0.11802 
    .50     .75     .90     .95 
0.18660 0.22110 0.24901 0.26081 
lowest : 0.0000000 0.0007279 0.0007749 0.0008008 0.0008427
highest: 0.2791181 0.2795230 0.2795852 0.2797034 0.2800000 
-------------------------------------------------------------------
centroid 
      n missing  unique    Info    Mean     .05     .10     .25 
   3168       0    3166       1  0.1809  0.1260  0.1411  0.1637 
    .50     .75     .90     .95 
 0.1848  0.1991  0.2177  0.2291 
lowest : 0.03936 0.04825 0.05965 0.05978 0.06218
highest: 0.24353 0.24436 0.24704 0.24964 0.25112 
-------------------------------------------------------------------
meanfun 
      n missing  unique    Info    Mean     .05     .10     .25 
   3168       0    3166       1  0.1428 0.09363 0.10160 0.11700 
    .50     .75     .90     .95 
0.14052 0.16958 0.18519 0.19343 
lowest : 0.05557 0.05705 0.06097 0.06254 0.06348
highest: 0.22342 0.22576 0.22915 0.23114 0.23764 
-------------------------------------------------------------------
minfun 
      n missing  unique    Info    Mean     .05     .10     .25 
   3168       0     913       1  0.0368 0.01579 0.01613 0.01822 
    .50     .75     .90     .95 
0.04611 0.04790 0.05054 0.05644 
lowest : 0.009775 0.009785 0.009901 0.009911 0.010163
highest: 0.168421 0.178571 0.185185 0.200000 0.204082 
-------------------------------------------------------------------
maxfun 
      n missing  unique    Info    Mean     .05     .10     .25 
   3168       0     123    0.99  0.2588  0.1925  0.2192  0.2540 
    .50     .75     .90     .95 
 0.2712  0.2775  0.2791  0.2791 
lowest : 0.1031 0.1053 0.1087 0.1111 0.1124
highest: 0.2774 0.2775 0.2778 0.2791 0.2791 
-------------------------------------------------------------------
meandom 
      n missing  unique    Info    Mean     .05     .10     .25 
   3168       0    2999       1  0.8292  0.1045  0.1888  0.4198 
    .50     .75     .90     .95 
 0.7658  1.1772  1.5602  1.8004 
lowest : 0.007812 0.007979 0.007990 0.008185 0.008247
highest: 2.544271 2.591580 2.676989 2.805246 2.957682 
-------------------------------------------------------------------
mindom 
       n  missing   unique     Info     Mean      .05      .10 
    3168        0       77     0.92  0.05265 0.007812 0.007812 
     .25      .50      .75      .90      .95 
0.007812 0.023438 0.070312 0.164062 0.187500 
lowest : 0.004883 0.007812 0.014648 0.015625 0.019531
highest: 0.343750 0.351562 0.400391 0.449219 0.458984 
-------------------------------------------------------------------
maxdom 
      n missing  unique    Info    Mean     .05     .10     .25 
   3168       0    1054       1   5.047  0.3125  0.6094  2.0703 
    .50     .75     .90     .95 
 4.9922  7.0078  9.4219 10.6406 
lowest :  0.007812  0.015625  0.023438  0.054688  0.070312
highest: 21.515625 21.562500 21.796875 21.843750 21.867188 
-------------------------------------------------------------------
dfrange 
      n missing  unique    Info    Mean     .05     .10     .25 
   3168       0    1091       1   4.995  0.2656  0.5607  2.0449 
    .50     .75     .90     .95 
 4.9453  6.9922  9.3750 10.6090 
lowest :  0.000000  0.007812  0.015625  0.019531  0.024414
highest: 21.492188 21.539062 21.773438 21.820312 21.843750 
-------------------------------------------------------------------
modindx 
      n missing  unique    Info    Mean     .05     .10     .25 
   3168       0    3079       1  0.1738 0.05775 0.07365 0.09977 
    .50     .75     .90     .95 
0.13936 0.20918 0.32436 0.40552 
lowest : 0.00000 0.01988 0.02165 0.02194 0.02217
highest: 0.84448 0.85470 0.85776 0.87950 0.93237 
-------------------------------------------------------------------
label 
      n missing  unique 
   3168       0       2 
female (1584, 50%), male (1584, 50%) 
-------------------------------------------------------------------

通过这个函数,我们现在可以对数据集中的每一个变量都有一个整体性把握。
我们可以看出我们共有21个变量,共计3168个观测值。

由于本数据集数据完整,没有缺失值,因而我们实际上并没有缺失值的挑战,但是为了跟实际的数据挖掘过程相匹配,我们会人为将一些数据设置为缺失值,并对这些缺失值进行插补,大家也可以实际看一下我们应用的插补法的效果:

注册送白菜38注册送白菜38注册送白菜38missing values
注册送白菜38注册送白菜38 set 30 numbers in the first column into NA
set.seed(1001)
random_Number <- sample(1:3168,30)
voice_Original1 <- voice_Original
voice_Original[random_Number,1] <- NA
describe(voice_Original)
  • 1234567
meanfreq 
      n missing  unique    Info    Mean     .05     .10     .25 
   3138      30    3136       1  0.1808  0.1257  0.1411  0.1635 
    .50     .75     .90     .95 
 0.1848  0.1991  0.2176  0.2291 
lowest : 0.03936 0.04825 0.05965 0.05978 0.06218
highest: 0.24353 0.24436 0.24704 0.24964 0.25112 
  • 12345678

这时候我们能看见,第一个变量meanfreq 中有了30个缺失值,现在我们需要对他们进行插补,我们会用到caret 包中的preProcess 函数

注册送白菜38注册送白菜38注册送白菜38 impute missing data
original_Impute <- preProcess(voice_Original,method="bagImpute")
voice_Original <- predict(original_Impute,voice_Original)
  • 123

现在我们来看一下我们插补法的结果,我们的方法就是将我们设为缺失值的原始值和我们插补后的值结合到一个数据框中,大家可以进行直接比较:

注册送白菜38注册送白菜38注册送白菜38 compare results of imputation
compare_Imputation <- data.frame(
  voice_Original1[random_Number,1],
  voice_Original[random_Number,1]
)
compare_Imputation
  • 123456

对比结果如下:

    meanfreq meanfreq.1
1  0.2122875  0.2117257
2  0.1826562  0.1814900
3  0.2009399  0.1954627
4  0.1838745  0.1814900
5  0.1906527  0.1954627
6  0.2319645  0.2313031
7  0.1736314  0.1814900
8  0.2243824  0.2313031
9  0.1957448  0.1954627
10 0.2159557  0.2117257
11 0.2047696  0.2084277
12 0.1831099  0.1814900
13 0.1873643  0.1814900
14 0.2077344  0.2117257
15 0.1648246  0.1651041
16 0.1885224  0.1898701
17 0.1342805  0.1272604
18 0.1933665  0.1954627
19 0.1888149  0.1940667
20 0.2180404  0.2117257
21 0.1980392  0.1954627
22 0.1898704  0.1954627
23 0.1761953  0.1814900
24 0.2356528  0.2313031
25 0.1785359  0.1814900
26 0.1856824  0.1814900
27 0.1808664  0.1814900
28 0.1784912  0.1814900
29 0.1990789  0.1954627
30 0.1714903  0.1651041

可以看出,我们的插补出来的值和原始值之间的差异是比较小的,可以帮助我们进行下一步的建模工作。

另外一点,我们在实际工作中,我们用到的预测因子中,往往包含数值型和类别型的数据,但是我们数据中全部都是数值型的,所以我们要增加难度,将其中的一个因子转换为类别型数据,具体操作如下:

注册送白菜38注册送白菜38注册送白菜38 add a categorcial variable
voice_Original <- voice_Original%>%
  mutate(sp.ent=
           ifelse(sp.ent>0.9,"High","Low"))
  • 除了使用describe 函数掌握数据的基本状况外,一个必不可少的数据探索步骤,就是使用图形进行探索,我们这里只使用一个例子,帮助大家了解:

    注册送白菜38注册送白菜38注册送白菜38 visual exploration of the dataset
    voice_Original%>%
      ggplot(aes(x=meanfreq,y=dfrange))+
      geom_point(aes(color=label))+
      theme_wsj()
      • 12345

图形结果如下:
meanfreq与dfrange散点图按照性别分组

但是我们更关注的是,预测因子之间是不是存在高度的相关性,因为预测因子间的香瓜性对于一些模型,是有不利的影响的。
对于研究预测因子间的相关性,corrplot 包中的corrplot函数提供了很直观的图形方法:

注册送白菜38注册送白菜38注册送白菜38find correlations between factors
factor_Corr <- cor(voice_Original[,-c(9,21)])
corrplot(factor_Corr,method="number")
  • 123

这里写图片描述

这个相关性矩阵图可以直观地帮助我们发现因子间的强相关性。

步骤3:数据分配与建模

在实际建模过程中,我们不会将所有的数据全部用来进行训练模型,因为相比较模型数据集在训练中的表现,我们更关注模型在训练集,也就是我们的模型没有遇到的数据中的预测表现。
因此,我们将我们的数据集的70%的数据用来训练模型,剩余的30%用来检验模型预测的结果。

注册送白菜38注册送白菜38注册送白菜38 separate dataset into training and testing sets
sample_Index <- createDataPartition(voice_Original$label,p=0.7,list=FALSE)
voice_Train <- voice_Original[sample_Index,]
voice_Test <- voice_Original[-sample_Index,]

但是我们还没有解决之前我们发现的一些问题,数据的量纲实际上是不一样的,另外某些因子间存在高度的相关性,这对我们的建模是不利的,因此我们需要进行一些预处理,我们又需要用到preProcess 函数:

注册送白菜38注册送白菜38注册送白菜38 preprocess factors for further modeling
pp <- preProcess(voice_Train,method=c("scale","center","pca"))
voice_Train <- predict(pp,voice_Train)
voice_Test <- predict(pp,voice_Test)
  • 我们首先将数值型因子进行了标准化,确保所有的因子在一个量纲上,接着对已经标准化的数据进行主成分分析,消除因子中的高相关性。如果我们看一下我们的现在经过处理的数据,就可以看到:

    voice_Train 
     12  Variables      2218  Observations
    -----------------------------------------------------------
    sp.ent 
          n missing  unique 
       2218       0       2 
    High (1144, 52%), Low (1074, 48%) 
    -----------------------------------------------------------
    label 
          n missing  unique 
       2218       0       2 
    female (1109, 50%), male (1109, 50%) 
    -----------------------------------------------------------
    PC1 
            n   missing    unique      Info      Mean 
         2218         0      2216         1 2.084e-17 
          .05       .10       .25       .50       .75 
      -5.2623   -3.8212   -2.0470    0.3775    2.0260 
          .90       .95 
       3.6648    4.5992 
    lowest : -9.885 -9.138 -8.560 -8.476 -8.412
    highest:  6.377  6.381  6.391  6.755  6.934 
    -----------------------------------------------------------
    PC2 
             n    missing     unique       Info       Mean 
          2218          0       2216          1 -4.945e-16 
           .05        .10        .25        .50        .75 
       -2.7216    -2.0700    -0.8694     0.2569     0.9934 
           .90        .95 
        1.5576     2.0555 
    lowest : -5.528 -5.315 -5.132 -5.103 -5.019
    highest:  4.493  4.509  4.598  4.732  4.931 
    -----------------------------------------------------------
    PC3 
            n   missing    unique      Info      Mean 
         2218         0      2216         1 1.579e-16 
          .05       .10       .25       .50       .75 
      -1.6818   -1.3640   -0.7880   -0.2214    0.5731 
          .90       .95 
       1.1723    1.6309 
    lowest : -2.809 -2.536 -2.462 -2.443 -2.407
    highest:  8.055  8.299  8.410  8.805  9.229 
    -----------------------------------------------------------
    PC4 
             n    missing     unique       Info       Mean 
          2218          0       2216          1 -3.583e-16 
           .05        .10        .25        .50        .75 
      -1.98986   -1.60536   -0.75468    0.09347    0.86320 
           .90        .95 
       1.49494    1.83657 
    lowest : -7.887 -6.616 -5.735 -5.568 -4.596
    highest:  2.888  2.921  3.046  3.123  3.311 
    -----------------------------------------------------------
    PC5 
             n    missing     unique       Info       Mean 
          2218          0       2216          1 -1.127e-16 
           .05        .10        .25        .50        .75 
       -1.8479    -1.2788    -0.5783     0.0941     0.6290 
           .90        .95 
        1.1909     1.5739 
    lowest : -4.595 -3.900 -3.887 -3.787 -3.760
    highest:  3.160  3.313  3.548  3.722  3.822 
    -----------------------------------------------------------
    PC6 
            n   missing    unique      Info      Mean 
         2218         0      2216         1 6.421e-18 
          .05       .10       .25       .50       .75 
     -1.56253  -1.03095  -0.39648   0.03999   0.53475 
          .90       .95 
      1.10113   1.38224 
    lowest : -6.971 -6.530 -5.521 -5.510 -5.320
    highest:  1.943  1.948  2.005  2.053  2.066 
    -----------------------------------------------------------
    PC7 
             n    missing     unique       Info       Mean 
          2218          0       2216          1 -2.789e-16 
           .05        .10        .25        .50        .75 
       -1.0995    -0.8375    -0.4970    -0.1234     0.4493 
           .90        .95 
        1.1055     1.4462 
    lowest : -3.370 -3.132 -2.977 -2.813 -2.664
    highest:  2.951  3.136  3.863  3.937  4.128 
    -----------------------------------------------------------
    PC8 
             n    missing     unique       Info       Mean 
          2218          0       2216          1 -7.291e-17 
           .05        .10        .25        .50        .75 
      -1.18707   -0.96343   -0.51065   -0.02345    0.46939 
           .90        .95 
       0.96676    1.28817 
    lowest : -2.644 -2.611 -2.477 -2.328 -2.261
    highest:  2.926  2.940  2.967  2.971  3.456 
    -----------------------------------------------------------
    PC9 
            n   missing    unique      Info      Mean 
         2218         0      2216         1 4.008e-16 
          .05       .10       .25       .50       .75 
     -1.06437  -0.84861  -0.47079  -0.04825   0.42092 
          .90       .95 
      0.96161   1.25187 
    lowest : -2.267 -2.263 -2.095 -2.066 -1.898
    highest:  2.217  2.244  2.266  2.414  2.460 
    -----------------------------------------------------------
    PC10 
            n   missing    unique      Info      Mean 
         2218         0      2216         1 2.387e-16 
          .05       .10       .25       .50       .75 
     -0.93065  -0.71784  -0.40541  -0.07025   0.37068 
          .90       .95 
      0.82534   1.12412 
    lowest : -2.160 -1.810 -1.754 -1.744 -1.661
    highest:  2.164  2.292  2.349  2.385  2.654 
    -----------------------------------------------------------
    

    原来的所有数值型因子已经被PC1-PC10取代了。

    现在,我们进行一些通用的设置,为不同的模型进行交叉验证比较做好准备。

    注册送白菜38注册送白菜38注册送白菜38 define formula
    model_Formula <- label~PC1+PC2+PC3+PC4+PC5+PC6+PC7+PC8+PC9+PC10+sp.ent
    
    注册送白菜38注册送白菜38注册送白菜38set cross-validation parameters
    modelControl <- trainControl(method="repeatedcv",number=5,
                                 repeats=5,allowParallel=TRUE)
    

    下面我们开始建立我们的第一个模型:逻辑回归模型:

    注册送白菜38注册送白菜38注册送白菜38 model 1: logistic regression
    glm_Model <- train(model_Formula,
                       data=voice_Train,
                       method="glm",
    
    

    将模型应用到测试集上,并将结果与真实值进行比较:

    voice_Test1 <- voice_Test[,-2]
    voice_Test1$glmPrediction <- predict(glm_Model,voice_Test1)
    table(voice_Test$label,voice_Test1$glmPrediction)
      • 123

我们得到的预测结果如下:

         female male
  female    459   16
  male        7  468
  • 123

我们的逻辑回归你模型将7个女性错判成了男性,16个男性错判成了女性,应该说结果还是不错的。
下面我们再来看看下一个模型:线性判别分析(LDA):

注册送白菜38注册送白菜38注册送白菜38 model 2:linear discrimant analysis
lda_Model <- train(model_Formula,
                   data=voice_Train,
                   method="lda",
                   trControl=modelControl)
voice_Test1$ldaPrediction <- predict(lda_Model,voice_Test1)
table(voice_Test$label,voice_Test1$ldaPrediction)
  • 12345678
         female male
  female    454   21
  male        6  469
  • 123

目前lda方法的预测结果略差于逻辑回归;
第三个模型:随机森林

注册送白菜38注册送白菜38注册送白菜38 model 3: random forrest
rf_Model <- train(model_Formula,
                  data=voice_Train,
                  method="rf",
                  trControl=modelControl,
                  ntrees=500)
voice_Test1$rfPrediction <- predict(rf_Model,voice_Test1)

female male female 457 18 male 6 469
  • 123

可以看到随机森林的结果介于上面两个模型之间。但是模型的结果是存在一定的偶然性的,即因为都使用了交叉验证,每个模型都存在抽样的问题,因此结果之间存在一定的偶然性,所以我们需要对模型进行意义上的比较。
但是在此之前,我想提一下并行计算的问题,我们在开始建模之前就使用paralleldoParallel 两个包设置了并行计算的参数,在modelControl中将allowParallel的值设为了TRUE,就可以帮助我们进行交叉验证时进行并行计算,下面这张图可以帮助我们看到差异:
并行计算的效果
因为原生的R只支持单进程,通过我们的设置,可以将四个核都使用起来,可以大为减少我们的计算时间。

我们最后的一个步骤就是要将三个模型进行比较,确定我们最优的一个模型:

注册送白菜38注册送白菜38注册送白菜38 which model is the best
model_Comparison <- 
  resamples(list(
    LogisticRegression=glm_Model,
    LinearDiscrimant=lda_Model,
    RandomForest=rf_Model
  ))
summary(model_Comparison)
bwplot(model_Comparison,layout=c(2,1))
    点击复制链接 与好友分享!回本站首页
    上一篇:javaweb之request获取请求头和请求数据
    下一篇:activeMQ概念问题解析
    相关文章
    图文推荐
    点击排行

    关于我们 | 联系我们 | 服务 | 投资合作 | 版权申明 | 在线帮助 | 网站地图 | 作品发布 | Vip技术培训 | 举报中心

    版权所有: 红黑--致力于做实用的IT技术学习网站

    注册送白菜38